技术学习分享_CKX技术 技术资讯 OneFlow源码解析:Tensor类型体系与Local Tensor

OneFlow源码解析:Tensor类型体系与Local Tensor

广告位

OneFlow源码解析:Tensor类型体系与Local Tensor

 

撰文|郑建华

更新|赵露阳

 

tensor和op是神经网络模型最基本的组件:op是模型的节点,tensor是连接节点的边。 然而,构建一个tensor并不仅仅是构造一个对象那么简单,至少要考虑以下问题:

 

  • 要支持节点本地的local tensor,以及分布式的global tensor;

  • 要支持eager和lazy执行模式;

  • 要支持不同的数据类型,包括float、double、int等;

  • 要支持不同设备。

 

创建tensor的方法

 

与PyTorch类似,在OneFlow中也可以通过两种主要的方式来创建tensor: Tensor tensor 这两种方式最终都会创建出OneFlow内部的C++ Tensor对象,即对应Python层的flow.Tensor类型。

 

 

1.1 Tensor

 

Python层的Tensor是在 tensor.py( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/python/oneflow/framework/tensor.py#L23 中引入的,通过python c api注册的Tensor类型对象,此对象在 MakeTensorType

https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/framework/tensor.cpp#L623 中被定义和返回。

 

在MakeTensorType中主要通过 PyTensorObject_init创建了Tensor对象:

 

  static int PyTensorObject_init(PyObject* self, PyObject* args, PyObject* kwargs) {  HANDLE_ERRORS  auto* temp = functional::_legacy_tensor_ctor(NULL, args, kwargs);  if (PyErr_Occurred()) { throw py::error_already_set(); }  auto* _self = (PyTensorObject*)self;  _self->data = PyTensor_Unpack(temp);  _self->data->set_pyobject(self);      // reset temp data to prevent clearing the pyobject  // when the temp is deallocated  ((PyTensorObject*)temp)->data.reset();  Py_XDECREF(temp);  return 0;  END_HANDLE_ERRORS_RET(-1)}

 

通过 functional::_legacy_tensor_ctor 函数创建了OneFlow内部的c++ Tensor对象: oneflow::one::Tensor ,并作为data绑定至Python的Tensor类型。 在MakeTensorType中,还通过 PyMethodDef( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/framework/tensor.cpp#L639-L641 为Tensor注册了很多C++方法,如:

 

  static PyMethodDef PyTensorObject_methods[] = {    {"storage_offset", PyTensorObject_storage_offset, METH_NOARGS, NULL},    {"stride", PyTensorObject_stride, METH_NOARGS, NULL},    {"is_contiguous", PyTensorObject_is_contiguous, METH_NOARGS, NULL},    {"contiguous", PyTensorObject_contiguous, METH_NOARGS, NULL},    {"contiguous_", PyTensorObject_contiguous_, METH_NOARGS, NULL},    {"pin_memory", PyTensorObject_pin_memory, METH_NOARGS, NULL},    {"is_pinned", PyTensorObject_is_pinned, METH_NOARGS, NULL},    {"requires_grad_", (PyCFunction)PyTensorObject_requires_grad_, METH_VARARGS | METH_KEYWORDS,     NULL},    {"retain_grad", PyTensorObject_retain_grad, METH_NOARGS, NULL},    {"detach", PyTensorObject_detach, METH_NOARGS, NULL},    {"clone", PyTensorObject_clone, METH_NOARGS, NULL},    {"zero_", PyTensorObject_zero_, METH_NOARGS, NULL},    {"register_hook", PyTensorObject_register_hook, METH_O, NULL},    {"_register_post_grad_accumulation_hook", PyTensorObject__register_post_grad_accumulation_hook,     METH_O, NULL},    {"global_id", PyTensorObject_global_id, METH_NOARGS, NULL},    {"check_meta_consistency", PyTensorObject_check_meta_consistency, METH_NOARGS, NULL},    {"to_numpy", PyTensorObject_to_numpy, METH_NOARGS, NULL},    {"type", (PyCFunction)PyTensorObject_type, METH_VARARGS | METH_KEYWORDS, NULL},

 

此外,在Python层 RegisterMethods( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/python/oneflow/framework/tensor.py#L502 也为T ensor注册了一些Python实现的Tensor方法或属性(如tensor.numpy),在OneFlow包初始化时会通过 RegisterMethod4Class

https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/python/oneflow/framework/register_class_method_util.py#L23 完成这些Python方法和属性的注册。RegisterMethod4Class的调用流程如下:

 

OneFlow源码解析:Tensor类型体系与Local Tensor

 

相比于Python实现来说,Tensor的++实现的方法/属性通常具有较高的性能。

 

1.2 tensor函数

 

Tensor是类型,而tensor 则是函数, flow.tensor 函数在 oneflow/api/python/functional/tensor_api.yaml 中被定义:

 

  - name: "tensor"  signature: [      "Tensor (PyObject* data, *, DataType dtype=None, Device device=None,      Bool requires_grad=False, Bool pin_memory=False) => TensorWithData",      "Tensor (PyObject* data, *, DataType dtype=None, Placement placement,      SbpList sbp, Bool requires_grad=False) => GlobalTensorWithData",    ]  bind_python: True

 

 

其C++实现位于 tensor_api.yaml.pybind.cpp 中,这是构建阶段自动生成的文件。

 

通过函数签名可以看到, flow.tensor() 有两种重载的方法:

 

  • TensorWithData

  • GlobalTensorWithData

 

它们分别用于构造local tensor和global tensor的构造。和上面的Tensor类似,flow.tensor返回的也是OneFlow内部的 oneflow::one::Tensor 对象(绑定至Python的Tensor对象)。

 

1.3 手动构建tensor的两种方式

 

和PyTorch类似,在OneFlow中常用创建tensor的方式也分为两种:

 

  • flow.Tensor

  • flow.tensor

 

创建方式示例:

 

  import oneflowimport numpy as np  oneflow.tensor([[1., -1.], [1., -1.]])# tensor([[ 1., -1.],#         [ 1., -1.]], dtype=oneflow.float32)oneflow.tensor(np.array([[1, 2, 3], [4, 5, 6]]))# tensor([[ 1, 2, 3],#         [ 4, 5, 6]], dtype=oneflow.int64)flow.Tensor([[1,2,3],[4,5,6]])

 

 

大多数情况下(和PyTorch类似的eager模式),可以通过指定device、dtype、shape等参数创建普通tensor(local tensor);

 

少数情况下(如OneFlow特有的eager global、lazy模式),需要global tensor时,可以通过指定sbp和placement的方式直接创建global tensor,也可通过tensor.to_global的方式将普通tensor转换为global tensor,可参考:

 

  • oneflow.tensor

https://oneflow.readthedocs.io/en/master/generated/oneflow.tensor.html#

  • global tensor

    https://docs.oneflow.org/master/parallelism/03_consistent_tensor.html

 

2

OneFlow的tensor类型体系

 

上述内容中介绍的oneflow内部的C++ Tensor对象,实际上其定义位于: oneflow/core/framework/tensor.h ,是一个抽象的Tensor类型。

 

OneFlow源码解析:Tensor类型体系与Local Tensor

 

其中 LocalTensor 即为普通的单卡视角下的Tensor(和PyTorch的Tensor类似); GlobalTensor 则为OneFlow所特有的全局视角下的Tensor(通常用于eager global模式或lazy模式下)。 Tensor使用了Bridge模式,每个Tensor子类内部有一个TensorImpl字段,负责抽象Tensor的实际实现:

 

OneFlow源码解析:Tensor类型体系与Local Tensor

 

3

local tensor的构造

 

我们以 flow.tensor([[1,2,3],[4,5,6]]) 为例,看一下tensor构造的过程。主要的流程如下:

 

OneFlow源码解析:Tensor类型体系与Local Tensor

在这个例子中,由于使用的是flow.tensor方法创建tensor(且为普通的local tensor)所以会用到在 oneflow/api/python/functional/tensor_api.yaml 中定义的TensorWithData方法,其实现,是位于 oneflow/api/python/functional/tensor_api.cpp 的TensorWithDataFunctor:

 

  class TensorWithDataFunctor { public:  Maybe<Tensor> operator()(PyObject* data, const Optional<Symbol<DType>>& dtype,                           const Optional<Symbol<Device>>& device, const bool requires_grad,                           const bool pin_memory) const {    ...    if (PyTensor_Check(data)) {      // Throw warnings like pytorch.      auto ret = PyErr_WarnEx(          PyExc_UserWarning,          "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "          "or sourceTensor.clone().detach().requires_grad_(True), rather than "          "oneflow.tensor(sourceTensor).",          1);      if (ret != 0) { return Error::RuntimeError(); }        const auto& other = PyTensor_Unpack(data);      return MakeTensorFromOtherTensor(other, dtype, device, requires_grad, pin_memory);    } else {      // Make tensor from python sequence or numpy array.      return MakeLocalTensorFromData(data, dtype, device, requires_grad, pin_memory);    }  }};

 

 

由于这里传入的data是一个Python的list对象,所以最终会调用 MakeLocalTensorFromData 方法,创建tensor 主要的逻辑都在这个函数中。其中大量调用Python和Numpy的接口,检查PyObject的数据类型,获取 Shape

https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L184 DataType( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L185 ,如果用户没有制定device,默认会 设置为CPU设备( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L191

 

后面主要是 调用EmptyFunctor

https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L194 SwitchCopyLocalTensorFromUntypedArray https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L195 。前者为tensor分配内存,后者进行数据拷贝,两个步骤都会通过虚拟机指令完 成。其中EmptyFunctor会走普通的 OpCall 指令、而 CopyLocalTensorFromUntypedArray会根据是否需要同步copy走到 AccessBlobByCallback/SyncAccessBlobByCallback 指令。

 

为什么要通过虚拟机指令完成呢?无论是内存资源的分配,还是数据拷贝,CPU和CUDA等不同设备上的操作都不一样。之前讨论Op/Kernel时已经看到,在OneFlow中所有动静态图任务执行、eager模式下op/kernel执行、内存/显存的分配和释放、device、stream等统一由虚拟机进行管理。

 

3.1 分配内存:EmptyFunctor

 

matmul relu inplace=false 时)等操作在执行过程中也会创建output tensor。之前讨论relu时重点关注了op和kernel的计算逻辑,而忽略了tensor相关的内容。

 

而这里只需要先构造一个空tensor对象,不需要其它计算,所以是一个Empty操作,Empty op对应的kernel—— EmptyKernel( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/user/kernels/empty_kernel.cpp#L30 没有实质性的计算逻辑,只是先根据shape、dtype、device信息创建一个空tensor,等待后续将实际的数据从内存中copy至此空tensor,从而完成整个tensor的创建过程。

 

EmptyFunctor同样和其他functor一样,最终会被Dispacth至对应的interpreter被解释执行,这里由于是eager模式下的local tensor,EmptyFunctor最终会进入eager local interpreter,交给 NaiveInterpret https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/framework/op_interpreter/eager_local_op_interpreter.cpp#L74 方法处理。流程如下:

 

1. 在构造 EagerLocalTensorImpl( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/framework/op_interpreter/eager_local_op_interpreter.cpp#L110 )对象 ,用 于存放tensor结果。但这只是一个壳子,还没有为tensor的数据分配存储空间。

 

2. 之后会 初始化EagerBlobObject( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/framework/op_interpreter/eager_local_op_interpreter.cpp#L114 TensorStorage( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/framework/tensor_impl.cpp#L120 ,这样tensor主要的字段基本构建完毕

 

3. 然后构造OpCall指令、提交 虚拟机PhysicalRun( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/framework/op_interpreter/eager_local_op_interpreter.cpp#L134-L136 ,等待vm的调度执行。

 

OpCall对应的指令策略最终会进入 oneflow/core/vm/op_call_instruction_policy.cpp ,并在 Prepare 方法中通过 AllocateOutputBlobsMemory 方法对TensorStorage完成实际的内存分配;在 Compute 方法中启动(empty op对应的)实际的kernel执行。

 

3.2 拷贝数据: SwitchCopyLocalTensorFromUntypedArray

 

SwitchCopyMirroredTensorFromUntypedArray 其实是 MAKE_SWITCH_ENTRY https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L150 展开后的函数名。宏展开 后的代码如下。实际会调用 CopyLocalTensorFromUntypedArray( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.cpp#L68

 

  template<typename... Args>static Maybe<void> SwitchCopyLocalTensorFromUntypedArray(    const std::tuple<DataType>& switch_tuple, Args&& ... args) {  static const std::map<std::tuple<DataType>, std::function<Maybe<void>(Args && ...)>>      case_handlers {          {SwitchCase(DataType::kFloat),           [](Args&&... args) {             return CopyLocalTensorFromUntypedArray<float>(std::forward<Args>(args)...);           }},           // ...      };  return case_handlers.at(switch_tuple)(std::forward<Args>(args)...);};

 

 

CopyLocalTensorFromUntypedArray 方法如下:

 

  template<typename T>Maybe<void> CopyLocalTensorFromUntypedArray(const std::shared_ptr<Tensor>& tensor,                                            PyObject* array) {  return CopyBetweenLocalTensorAndNumpy<T>(tensor, array, CopyFromNumpyArray, "mut",                                           /*block_host_until_done=*/false);}

 

 

其内部实际调用了 CopyBetweenLocalTensorAndNumpy 方法。

 

CopyBetweenLocalTensorAndNumpy

 

顾名思义,这个方法主要是用在numpy和tensor之间进行数据copy的。其中第3个参数: CopyFromNumpyArray 实际是一个函数回调的callback方法,其主要通过 SyncAutoMemcpy 进行array和tensor(blob)之间的内存拷贝:

 

 

  void CopyFromNumpyArray(ep::Stream* stream,                        const std::shared_ptr<vm::EagerBlobObject>& eager_blob_object,                        const NumPyArrayPtr& array_ptr) {  SyncAutoMemcpy(stream, eager_blob_object->mut_dptr(), array_ptr.data(),                 eager_blob_object->ByteSizeOfBlobBody(), eager_blob_object->mem_case(),                 memory::MakeHostMemCase());}

 

继续 CopyBetweenLocalTensorAndNumpy( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/api/python/utils/tensor_utils.h#L93 方法 ,其中最关键的是:

 

     JUST(PhysicalRun([&](InstructionsBuilder* builder) -> Maybe<void> {      return builder->AccessBlobByCallback(          tensor,          [array_ptr, Copy](ep::Stream* stream,                            const std::shared_ptr<vm::EagerBlobObject>& eager_blob_object) {            Copy(stream, eager_blob_object, array_ptr);          },          modifier);    }));

 

通过InstructionsBuilder构建了 AccessBlobByCallback 指令,参数为上面通过EmptyFuncor创建的空tensor、callback的函数指针及参数、以及modifier(string “mut”表示可动态修改)。

 

AccessBlobByCallback

 

和OpCall类似,InstructionsBuilder调用 AccessBlobByCallback 时,也会实际构造对应的vm指令策略—— AccessBlobArgCbInstructionPolicy 并派发至vm,等待被调度和实际执行:

 

  template<typename T>Maybe<void> InstructionsBuilder::AccessBlobByCallback(    const T tensor,    const std::function<void(ep::Stream*, const std::shared_ptr<vm::EagerBlobObject>&)>& callback,    const std::string& modifier) {  const std::shared_ptr<vm::EagerBlobObject>& eager_blob_object = JUST(tensor->eager_blob_object());  Symbol<Device> device = JUST(GetDevice(tensor));  ...  Symbol<Stream> stream = JUST(GetDefaultStreamByDevice(device));  JUST(SoftSyncStream({eager_blob_object}, stream));  auto instruction = intrusive::make_shared<vm::Instruction>(      // Never replace `stream` with producer_stream or last_used_stream.      JUST(Singleton<VirtualMachine>::Get()->GetVmStream(stream)),      std::make_shared<vm::AccessBlobArgCbInstructionPolicy>(eager_blob_object, callback,                                                             modifier));  instruction_list_->EmplaceBack(std::move(instruction));  return Maybe<void>::Ok();}

 

等该条 AccessBlobArgCbInstructionPolicy 指令实际执行时,会在指令的 Compute( https://github.com/Oneflow-Inc/oneflow/blob/2e6a72c8734b9929191306df35b4284e9caa8126/oneflow/core/vm/access_blob_arg_cb_instruction_policy.h#L79 )方法 中调用callback完成从tensor的blob <-> numpy的ndarray之间的数据copy,至此拷贝过程结束, flow.tensor 的创建全部完成。

 

(本文经授权后 发布。原文:

https://segmentfault.com/a/1190000041989895)

 

参考资料

 

其他人都在看

欢迎体验OneFlow v0.8.0:https://github.com/Oneflow-Inc/oneflow/

 


OneFlow源码解析:Tensor类型体系与Local Tensor

本文分享自微信公众号 – OneFlow(OneFlowTechnology)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

本文来自网络,不代表技术学习分享_CKX技术立场,转载请注明出处。

作者: CKX技术

上一篇
下一篇
广告位

发表回复

返回顶部